Solubility of Mixtures of Carbon Dioxide and Hydrogen Sulfide in Water + Monoethanolamine + 2-Amino-2-methyl-1-propanol

Meng-Hui Li* and Bei-Chia Chang

Department of Chemical Engineering, Chung Yuan Christian University, Chung Li, Taiwan 32023, Republic of China

> The solubilities of mixtures of carbon dioxide and hydrogen sulfide in water + monoethanolamine (MEA) + 2-amino-2-methyl-1-propanol (AMP) have been measured at 40 and 80 °C and at partial pressures of acid gases ranging from 1.0 to 200 kPa. The ternary mixtures studied were 3 kmol m^{-3} MEA + 2 kmol m^{-3} AMP and 2 kmol m^{-3} MEA + 3 kmol m^{-3} AMP aqueous solutions. The Kent and Eisenberg model has been modified to represent the solubility of mixtures of CO_2 and H_2S in the ternary solutions. The model reasonably reproduces the equilibrium partial pressures of CO_2 and H_2S above the ternary solutions for the systems tested.

Introduction

Solutions of amines are frequently used in gas treating processes to remove acid gases such as CO₂ and H₂S from gas streams in the natural gas and synthetic ammonia industries and petroleum chemical plants. Recently the use of blended amines such as mixtures of monoethanolamine (MEA) and N-methyldiethanolamine (MDEA) has been suggested for CO₂ removal (Chakravarty et al., 1985). Sterically hindered alkanolamines have also been proposed as commercially attractive solvents for removal of acid gases from gaseous streams (Sartori and Savage, 1983). Compared to MDEA, 2-amino-2-methyl-1-propanol (AMP) has the same CO_2 loading capacity (1 mol of CO_2 /mol of amine) but has a higher reaction rate constant for the reaction with CO_2 (Li and Chang, 1994a). The $H_2O + MEA$ + AMP may be considered as a new solvent in addition to $H_2O + MEA + MDEA$ for the acid gas treating process. It is the purpose of this research to measure the solubility of mixtures of CO_2 and H_2S in $H_2O + MEA + AMP$.

Experimental Section

The materials, vapor-liquid equilibrium apparatus, and methods of analysis are the same as those used in our previous work (Li and Chang, 1994a). The loading capacity of the acid gases of solutions was determined by the titration method, similar to that of Teng and Mather (1989). The estimated experimental error in the measured solubility is about $\pm 2-3\%$.

Results and Discussion

For the measurements of the solubility of mixtures of CO_2 and H_2S in $H_2O + MEA + AMP$, the systems studied were 3 kmol·m⁻³ MEA + 2 kmol·m⁻³ AMP and 2 kmol·m⁻³ MEA + 3 kmol·m⁻³ AMP aqueous solutions. The measured solubilities at 40 and 80 °C are presented in Tables 1-4. The partial pressures of acid gases are specified by changing the initial values of the partial pressures of acid gases to cover the desired partial pressure range of acid gases. When two acid gases coexist in a system, the solubility of one of the acid gases will normally be affected and compete with that of the other acid gas.

* To whom correspondence should be addressed.

Table 1.	Solubilit	y of Mixtu	ires of	f CO ₂ and	H ₂ S in 3	
kmol·m ⁻³	MEA + 2	kmol·m ⁻³	AMP	Aqueous	Solution	at 40
°C				-		

P/k		:Pa	C	la la
	CO ₂	H_2S	CO ₂	H_2S
	0.895	25.59	0.209	0.459
	1.351	8.219	0.351	0.207
	1.561	21.78	0.268	0.363
	1.856	1.148	0.442	0.048
	6.212	66.41	0.239	0.467
	9.222	2.989	0.516	0.049
	15.98	27.75	0.409	0.200
	21.51	112.8	0.266	0.445
	27.27	128.4	0.280	0.442
	33.75	6.044	0.538	0.046
	38.43	45.49	0.456	0.193
	80.34	61.32	0.497	0.170
	95.58	11.05	0.582	0.043
	120.3	62.79	0.510	0.146
	138.1	12.84	0.598	0.041
	148.8	22.73	0.587	0.054

^a Loading capacity = mol of acid gas/mol of amine.

Table 2. Solubility of Mixtures of CO₂ and H₂S in 3 kmol^{-m⁻³} MEA + 2 kmol^{-m⁻³} AMP Aqueous Solution at 80 °C

P/k	P/kPa		a
CO_2	H_2S	CO ₂	H_2S
0.695	17.89	0.116	0.294
1.174	1.192	0.275	0.046
1.265	27.46	0.137	0.334
1.555	4.035	0.247	0.097
2.462	42.39	0.144	0.370
3.503	6.068	0.287	0.092
4.690	62.58	0.162	0.397
9.996	3.303	0.397	0.039
12.00	84.02	0.190	0.390
12.30	10.42	0.342	0.092
26.04	105.5	0.242	0.365
39.61	6.636	0.430	0.041
49.23	20.05	0.417	0.085
75.56	8.94	0.501	0.038
104.9	25.18	0.467	0.076
1 21 .9	10.38	0.496	0.034

^a Loading capacity = mol of acid gas/mol of amine.

It is difficult to use the solubility data directly from the measurements for design calculations. A correlation to represent the solubility of two acid gases in blended amine

Table 3. Solubility of Mixtures of CO₂ and H₂S in 2 kmol·m⁻³ MEA + 3 kmol·m⁻³ AMP Aqueous Solution at 40 $^{\circ}C$

P/kPa		α^a	
CO ₂	H_2S	CO_2	H_2S
0.628	3.393	0.317	0.196
1.263	1.972	0.349	0.106
2.056	27.43	0.220	0.451
5.343	11.09	0.386	0.203
5.517	4.327	0.393	0.103
9.005	64.25	0.242	0.486
16.21	21.32	0.406	0.210
20.59	9.640	0.455	0.101
22.29	14.95	0.488	0.142
25.99	114.5	0.272	0.493
27.00	31.83	0.420	0.217
41.82	15.52	0.494	0.096
42.88	44.43	0.440	0.224
73.44	21.67	0.539	0.093
78.42	74.13	0.449	0.237
151.3	38.35	0.603	0.104

^a Loading capacity = mol of acid gas/mol of amine.

solutions is normally required for practical applications. In this study, the method of Kent and Eisenberg (1976) will be applied to correlate the solubility of mixtures of CO₂ and H_2S in $H_2O + MEA + AMP$ solutions. Equations describing phase equilibrium for the system $CO_2 + H_2S +$ $H_2O + MEA + AMP$ were presented in our previous work (Li and Chang, 1994a,b). As in the model of Kent and Eisenberg (1976), literature values for Henry's law constants and for equilibrium constants for reactions not involving amines are also used in this study. The equilibrium constants which govern the main amine reactions are assumed to be functions of temperature, amine concentration, and acid gas loading (Li and Shen, 1993). Using the least-squares fit to the equilibrium partial pressures of mixtures of CO_2 and H_2S in $H_2O + MEA + AMP$, the equilibrium constants were determined as follows:

$$\begin{split} K_{11} &= \exp\{-9.75 - 3055.56/(T/K) - 1.18313 \times \\ & 10^8/(T/K)^3 + 0.11\alpha_{H_2S} + 0.55\alpha_{H_2S}^2 - \\ & 6.93\alpha_{CO_2} + 23.45\alpha_{CO_2}^2 + 30.44\alpha_{H_2S}\alpha_{CO_2} + \\ & 3.69m_1/(\text{kmol}\cdot\text{m}^{-3}) - 0.78[m_1/(\text{kmol}\cdot\text{m}^{-3})]^2 - \\ & 1.01m_1/(\text{kmol}\cdot\text{m}^{-3})m_2/(\text{kmol}\cdot\text{m}^{-3}) + \\ & 0.93\ln[m_1/(\text{kmol}\cdot\text{m}^{-3})]\} \quad (1) \end{split}$$

$$\begin{split} K_{12} &= \exp\{-3.93 - 12833/(T/\text{K}) - 2.5034 \times \\ & 10^8/(T/\text{K})^3 - 0.32\alpha_{\text{H}_2\text{S}} + 1.54\alpha_{\text{H}_2\text{S}}{}^2 + \\ & 2.5\alpha_{\text{CO}_2} - 1.94\alpha_{\text{CO}_2}{}^2 - 1.38\alpha_{\text{H}_2\text{S}}\alpha_{\text{CO}_2} + \\ & 15.84m_2/(\text{kmol}\cdot\text{m}^{-3}) - 2.17[m_2/(\text{kmol}\cdot\text{m}^{-3})]^2 - \\ & 0.13m_1/(\text{kmol}\cdot\text{m}^{-3})m_2/(\text{kmol}\cdot\text{m}^{-3}) - \\ & 12.23\ln[m_2/(\text{kmol}\cdot\text{m}^{-3})]\} \end{split}$$

$$\begin{split} K_2 &= \exp\{-97.02 + 5316.67/(T/K) - 20.576 \times \\ & 10^8/(T/K)^3 - 19.45\alpha_{\rm CO_2} + 33.32\alpha_{\rm CO_2}{}^2 - \\ & 4.13m_1/(\rm{kmol}\cdot\rm{m}^{-3}) + 0.07[m_1/(\rm{kmol}\cdot\rm{m}^{-3})]^2 - \\ & 0.58m_1/(\rm{kmol}\cdot\rm{m}^{-3})m_2/(\rm{kmol}\cdot\rm{m}^{-3}) + \\ & 8.26\ln[m_1/(\rm{kmol}\cdot\rm{m}^{-3})]\} \ (3) \end{split}$$

 m_1 and m_2 are the molarities of MEA and AMP, respec-

Table 4. Solubility of Mixtures of CO₂ and H₂S in 2 kmol·m⁻³ MEA + 3 kmol·m⁻³ AMP Aqueous Solution at 80 $^{\circ}C$

P/kI	P/kPa		a
CO ₂	H_2S	CO ₂	H_2S
0.545	4.556	0.124	0.155
1.769	5.519	0.212	0.134
2.956	8.238	0.211	0.156
3.069	49.33	0.124	0.412
6.053	28.09	0.207	0.277
6.109	4.430	0.297	0.079
10.49	13.10	0.287	0.149
10.60	99.10	0.143	0.483
10.61	2.785	0.385	0.047
19.13	64.34	0.229	0.343
27.77	28.76	0.323	0.185
29.60	21.34	0.359	0.146
52.06	50.54	0.332	0.221
70.93	30.38	0.413	0.139
82.82	7.284	0.480	0.042
127.3	8.441	0.550	0.041

^a Loading capacity = mol of acid gas/mol of amine.

Figure 1. Effect of H_2S on the partial pressures of CO_2 over 3 kmol^{m⁻³} MEA + 2 kmol^{m⁻³} AMP aqueous solution at 40 °C. The specified value denotes H_2S loading of the solution. The lines show the values calculated by the modified Kent and Eisenberg model. The points show the data points.

tively, α is the acid gas loading capacity of the solutions, and K is in kmol·m⁻³.

The overall average absolute percentage deviation for the calculations of acid gas partial pressures is around 18%. Figure 1 shows the comparisons between calculated and experimental partial pressures of CO_2 over 3 kmol m^{-3} MEA + 2 kmol m^{-3} AMP aqueous solution at various H₂S loading capacities at 40 °C. The solubility of CO₂ over H₂O + MEA + AMP is affected by the solubility of H₂S in the solution; the higher the H₂S loading capacity of the solution observed, the lower the CO₂ loading capacity of the solution obtained, as shown in Figure 1.

A plot of the partial pressures of H_2S over 2 kmolm⁻³ MEA + 3 kmolm⁻³ AMP aqueous solution versus the H_2S loading of the solution at various CO₂ loading capacities at 40 °C is shown in Figure 2. The loading of H_2S of the solution is affected by the CO₂ loading of the solution. The lower the CO₂ loading capacity of the solution observed, the higher the H_2S loading capacity of the solution presented, as shown in Figure 2. The calculated solubilities of acid gases over $H_2O + MEA + AMP$ by the modified Kent and Eisenberg model are generally in good agreement with experimental data as shown in Figures 1 and 2.

Figure 2. Effect of CO_2 on the partial pressures of H_2S over 2 kmol·m⁻³ MEA + 3 kmol·m⁻³ AMP aqueous solution at 40 °C. The specified value denotes CO_2 loading of the solution. The lines show the values calculated by the modified Kent and Eisenberg model. The points show the data points.

Figure 3. Comparison of the predicted and the observed solubilities of the mixtures of CO_2 and H_2S in a 3.43 mol/L AMP aqueous solution at 50 °C. The points show data reported by Teng and Mather (1989). The predicted values are calculated by the modified Kent and Eisenberg model.

To test the applicability of the model, calculations of the solution for data not included in the data base have also been performed. The solubilities of mixtures of CO2 and ${
m H_2S}$ in a 3.43 mol/L AMP aqueous solution at 50 °C (data of Teng and Mather (1989)) and at partial pressures of acid gases less than 300 kPa are calculated using the modified Kent and Eisenberg model. The model yields satisfactory results for the partial pressures of mixtures of acid gases in $H_2O + AMP$, as shown in Figure 3. Figure 4 gives a comparison between the results of the calculated and experimental solubilities of H_2S in 24 mass % MEA + 6 mass % AMP aqueous solution for temperatures of 40-100 °C (data of Li and Chang (1994a)). The calculations of the solubility of CO_2 in 6 mass % MEA + 24 mass % AMP aqueous solution (data of Li and Chang (1994b)) were also carried out, and the results are shown in Figure 5. The results of the model calculations are satisfactory.

Conclusion

The solubilities of mixtures of CO_2 and H_2S in H_2O + MEA + AMP have been measured at 40 and 80 $^\circ C$ and at

Figure 4. Partial pressure P of H_2S in 24 mass % MEA + 6 mass % AMP aqueous solution at various temperatures for various H_2S loadings. The lines show the values calculated by the modified Kent and Eisenberg model. The points show data reported by Li and Chang (1994a): \bigcirc , 40 °C; \square , 60 °C; \triangle , 80 °C; \diamond , 100 °C.

Figure 5. Partial pressure P of CO_2 in 6 mass % MEA + 24 mass % AMP aqueous solution at various temperatures for various CO_2 loadings. The lines show the values calculated by the modified Kent and Eisenberg model. The points show data reported by Li and Chang (1994b): \bigcirc , 40 °C; \square , 60 °C; \triangle , 80 °C; \diamond , 100 °C.

acid gas partial pressures up to 200 kPa. The systems studied were 3 kmol·m⁻³ MEA + 2 kmol·m⁻³ AMP and 2 kmol·m⁻³ MEA + 3 kmol·m⁻³ AMP aqueous solutions. The model of Kent and Eisenberg for calculating the solubilities of acid gases in alkanolamine solutions has been extended to represent the solubility of mixtures of CO₂ and H₂S in H₂S + MEA + AMP. The equilibrium constants of chemical reactions involving amines are expressed as functions of temperature, amine concentration, and acid gas loading. The model reasonably reproduces the equilibrium partial pressures of CO₂ and H₂S over H₂O + MEA + AMP for the systems tested. The model has also been tested for systems not included in the data base. Satisfactory results were obtained for the calculation of the solubility of H₂S (or CO₂) in H₂O + MEA + AMP solutions.

Literature Cited

Chakravarty, T.; Phukan, U. K.; Weiland, R. H. Reaction of Acid Gases with Mixtures of Amines. Chem. Eng. Prog. 1985, 81, 32–36.

Kent, R. L.; Eisenberg, B. Better Data for Amine Treating. Hydrocarbon Process. 1976, 55, 87–90.

- Li, M. H.; Shen, K. P. Calculation of Equilibrium Solubility of Carbon Dioxide in Aqueous Mixtures of Monoethanolamine with Methyldiethanolamine. *Fluid Phase Equilib.* **1993**, 85, 29-140.
- Li, M. H.; Chang, B. C. Solubility of Hydrogen Sulfide in Water + Monoethanolamine + 2-Amino-2-methyl-1-propanol. J. Chem. Eng. Data 1994a, 39, 361-365.
- Data 1994a, 39, 361-365.
 Li, M. H.; Chang, B. C. Solubility of Carbon Dioxide in Water + Monoethanolamine + 2-Amino-2-methyl-1-propanol. J. Chem. Eng. Data 1994b, 39, 448-452.
- Data 1994b, 39, 448-452.
 Sartori, G.; Savage, D. W. Sterically Hindered Amines for CO₂ Removal from Gases. Ind. Eng. Chem. Fundam. 1983, 22, 239-249.

Teng, T. T.; Mather, A. E. Solubility of H₂S and CO₂ and Their Mixtures in an AMP Solution. Can. J. Chem. Eng. 1989, 67, 846-850.

Received for review August 3, 1994. Accepted October 8, 1994.[®] This research was supported by a grant, NSC 83-0402-E033-010, from the National Science Council of the Republic of China.

JE940160O

* Abstract published in Advance ACS Abstracts, December 1, 1994.